Briefing to the Portfolio Committee on Minerals and Energy on the Western Cape Power Outages

> Jacob Maroga Acting Chief Executive MD Transmission

> > 30 January 2006

⊕ Eskom

Understanding the Cape outage incidents and the challenges that lie ahead

(€) Eskom

Contents

- Background
 - ❖ Power supply to the Cape
- · Outage incidents
 - ❖ November 2005 outages
- · Current supply status
- · The future
 - ❖ Challenges and risks
 - Solutions and investments
- Conclusion

@ Eskom

Power supply to the Cape

Power supply to the Cape

- Koeberg Power Station and transmission transfers from the north
- · 2 Koeberg units 900MW each
- Transmission network carries 50% of load to the Cape when both Koeberg units are online
 - During peak demand periods, peaking generation (Gariep and Vanderkloof hydropower stations and Palmiet pumped storage power station) is utilised.
- During planned maintenance outage of one of the units, the transmission network carries about 75% of the load
 - The use of peaking generation is increased.
 - Emergency generation Acacia and the Port Rex gas turbines
 - City of Cape Town Steenbras pumped storage and Foreshore gas turbine

11 November 2005 event

- Mechanical failure on 400kV switchgear during switching operations in the transmission sub-station at Koeberg
- Automatic protection tripping of Koeberg generator and scram of the reactor
- · Tripping of Tx lines, transformers due to voltage drop
- Loss of 1350 MW
- Within 90 minutes most customers reconnected by Eskom and the municipalities

@ Eskom

16 November 2005 event

- · Fire under Muldersylei Droerivier 400kV line
- Flash-over (short circuit) between the lines, resulting in the line tripping
- Koeberg Unit 2 experienced a reactor scram due to the operation of the rod control supply protection circuit
- Loss of 1230 MW
- · Power restored to most affected areas within 60 minutes
- Lessons learnt on November 11 enabled us to manage events of the 16 November more effectively
- Joint technical team established focusing on among others scheduled load shedding and maintenance, and management of supply to essential services.

(和 Eskom

23 November 2005 events

- Controlled shutdown of Koeberg unit 2 due to concerns on a chemical concentration on a safety system
- Load shedding initiated because of network limitations
- Customer assistance was obtained to minimize the mandatory rationing
- Load shedding of 50 to 800 MW occurred for two days from 23 to 24 November 2005

Current supply status

Current status of power supply

- · Currently supplying the Cape via:
 - Koeberg Unit 2 (unit 1 on extended outage)
 - Transmission transfers
 - ❖Peaking generation (Palmiet, gas turbines)
- Risk of supply interruption will increase should any of the generation plant and/or transmission system fail
 - Doing everything possible to avoid this
 - Eskom will make a call to conserve electricity
- · Eskom will communicate any changes

1125/12 V

(€) Eskom

W

Cape System Supply under emergency

- Emergencies in the Cape could be due to:
 - Unplanned shut down of one Koeberg unit
 - Loss of one of the transmission lines, while one Koeberg unit is refueling, or when the load is high
- In the event of these emergencies occurring the following resources are available for supplying the load:
 - Palmiet Pumped Storage Scheme (400MW)
 - Emergency generating hours on the Orange River Hydro Scheme (600MW)
 - Eskom gas turbines (Acacia and Port Rex =354MW)
 - Demand Market participation (90 to 100MW)
 - Steenbras pump storage scheme (City of Cape Town) based on optimising the maximum demand for the Municipality(180MW)
 - . City of Cape Town gas turbine (40MW)

Challenges

- · The challenges include:
 - · Running out of water for emergency generation
 - Limited opportunities for pumping
 - · Running out of fuel for the gas turbines
 - Limited energy from the demand market participants

Solutions and Investments

- North of Hydra Transmission: R657m
 - Approved October 2002
 - -Completed Dec 2004
- · South of Hydra Transmission: R1.1b
 - -Approved June 2004
 - To be completed by April 2007
- · Southern Cape Grid Strengthening: R463m
 - Approved April 2005
 - -To be completed by May 2007
- Open Cycle Gas Turbines R3.5b
 - Approved June 2005
 - To be completed by June 2007

Conclusion

- Incidents were different in origin; Common denominator was one Koeberg unit was shutdown
- Risks to supply to Cape increases whenever one Koeberg unit is shutdown; Challenge is linked to higher demand and tightness of supply
- · Immediate risks :
 - Unit 2 running, currently not in peak demand period;
 - risk of supply stable;
 - Unit 2 refueling delayed until April/May 2006;
 - * Risk increases in winter during peak demand.
- To manage these challenges, a number of mitigating strategies are been implemented and investments are being made to upgrade and build infrastructure

Koeberg: maintenance regime.

- The Koeberg units have to be refuelled at approximately 18 month intervals
- Outage cycles are planned such that one unit should always be operating, with both units operating during winter.
- Planned outages also used to do routine maintenance and modifications.
 - Modifications are carried out continually to keep abreast of international developments in the nuclear power generation industry.

Koeberg: governance

- SA is a founder member of International Atomic Energy Agency
- Koeberg operates in terms of the National Nuclear Regulator's licensing requirements
- Member of World Association of Nuclear Operators (WANO)
- Member of International Nuclear Power Operators (INPO)
- · International peer review every 2 years
- · Eskom Holdings Board oversight committee

@ Eskom

Koeberg: performance record

- In 2005 Koeberg recognised by EdF (France) as No 1 performer in their International Safety Challenge
- In 2005 Koeberg reached top quartile of International Nuclear Power Operators (INPO) Index
- In 2004, both Koeberg units synchronised to the grid for 147 days, the previous best run was 144 days during 2000.
- Koeberg Unit 1 holds first place as unit with longest uninterrupted running days in Eskom (454 days).
- Recognised as the best run station in Eskom (two consecutive years)

(®) Eskom

Koeberg unit 1 extended outage

25 December 2005

- Koeberg unit 2 operating at full power (900 MW)
- Koeberg unit 1 returning to service from its planned shutdown
- Unit 1 generator experienced an earth fault on Sunday 25 Dec 2005
- Reactor was placed in controlled shutdown pending further investigations into the generator fault
 - There were no problems in the reactor and turbine
- Project team established

-7 Nex)

Investigation activities

- 5 day "forced cooling" of the turbine/generator
- Dismantle generator to get access to the stator and rotor (10 days work)
- · Remove rotor from stator
- Stripping the bars in the stator 105 bars in total
- · Check for damage on every single bar
- · Gather material for further technical analysis

Damage to Unit 1 Generator

- · Foreign object (bolt) found in the generator
 - . Based on available information, this is the cause of fault
- · Cooling systems of the stator and rotor affected
- · Ongoing detailed technical analysis
- · More than half of the bars damaged
 - . These have to replaced

@ Eskom

Repairing the generator

- Return unit back to service in the shortest possible time to meet electricity demand
- · Minimum of 3 months to repair
 - . This means acquiring a replacement rotor and stator
- Could take longer
 - Eskom will inform media and public in case it takes longer than current plan

-> fiture

